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SUMMARY

We discuss the performance optimization of the Semi-Implicit Method for Pressure-Linked Equations—
Revised (SIMPLER) Picard algorithm for steady incompressible internal �ows. We discuss the nonlinear
convergence of the Picard iteration as a function of the pressure and scalar potential continuity projec-
tions stemming from the SIMPLER algorithm, for three example problems. In particular, we discuss the
choice of under-relaxation method, and choice of under-relaxation factors; the choice of the projection
algorithm; and the required tolerance for the linear solve of the generalized Poisson equations for the
pressure and scalar potential equations that arise from the projection operations. We conclude that the
convergence of the nonlinear Picard iteration can be e�ectively controlled by the optimal enforcement
of the continuity projections. Copyright ? 2005 John Wiley & Sons, Ltd.

KEY WORDS: projection methods; SIMPLER; Navier–Stokes equations; solvers; Picard iterations;
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1. INTRODUCTION

Computational �uid dynamics (CFD) has reached the status of an established technology in
the �eld of chemical process design and analysis. This has been motivated by the fact that
simple reactor models, such as those for the continuous stirred-tank reactor and the plug-�ow
reactor, are inadequate for predicting the mixing, which, in turn is crucial for predicting the
extent of chemical reaction, in industrial reactors. Several commercial CFD computer codes
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exist today (e.g. http:==www.cd-adapco.com=products=starsolver.htm, http:==www.�uent.com=
software=�uent=index.htm, http:==www.reaction-eng.com=modeling tools=ban�.html) for the so-
lution of steady-state problems involving large-scale furnaces, reactors, smelters, and �uidized
beds. For such accurate modelling of chemical reaction in large and complex reactors, it is
necessary to represent two processes faithfully: the macroscopic mixing, that brings relatively
large clumps of reactant �uids together, and the microscopic mixing, that brings the reactants
from these clumps together at the molecular level. This paper deals with �uid mechanics,
which is responsible for macromixing in chemical reactors.
An important concern that arises in the application of CFD codes to practical problems

is that often these codes have di�culty in converging to a solution (a robustness issue) or
do not converge fast enough (an e�ciency issue). This paper focuses on robustness and
e�ciency issues arising from the application of the Semi-Implicit Method for Pressure-Linked
Equations—Revised (SIMPLER) [1] technique to steady-state incompressible �uid �ows.
The map of the rest of this paper is as follows. In Section 2, we present a concise description

of the SIMPLER technique that is discussed in detail in Reference [2]. In Section 3, aspects of
the nonlinear Picard iteration are discussed. In particular, an analysis of a particular variety of
under-relaxation, introduced in Reference [1] and used in this paper, is presented. In addition,
the solution of the linear systems of equations by a nonstationary scheme is discussed with
a view to understanding the measurement of work used in the section on results (Section 4).
Section 3 also discusses the convergence criterion used later in Section 4. Finally, overall
conclusions on the performance of the SIMPLER algorithm, as a projection algorithm in the
context of a nonlinear Picard solver, are drawn.

2. RECAPITULATION OF THE SIMPLER TECHNIQUE

The governing equations for laminar �uid �ows are the Navier–Stokes (NS) equations [3]. We
use the steady-state form of the NS equations, in which we neglect the time derivative. From
hereon, the term ‘NS equations’ refers to this steady-state form. For steady-state turbulent
�ows, the Reynolds decomposition is applied and the NS equations are time-averaged, resulting
in the Reynolds-averaged Navier–Stokes (RANS) equations [4]. Application of the Boussinesq
hypothesis and use of the Prandtl–Kolmogorov hypothesis results [4] in the k–� model, which
looks very similar to the NS equations, with the di�erence being the addition of two extra
PDEs and the use of an e�ective viscosity, instead of the laminar viscosity used in the
NS equations. The e�ective viscosity is comprised of the laminar viscosity and a ‘turbulent
viscosity.’ The turbulent viscosity depends on the ‘turbulent kinetic energy’ and the ‘rate of
dissipation of turbulent kinetic energy’ (or ‘dissipation’ for short). The two additional PDEs
referred to above are those for the turbulent kinetic energy and the dissipation. We will refer
to both the NS and the RANS equations as simply the NS equations; the exact form will be
evident from the context.
When discretized using a �nite-volume technique on a staggered grid, the equations of

conservation have the following form. The linearized, discrete momentum equations are

AV1V1 = SV1 ≡
˙

SV1 −GV1∇h
f1P (1)

AV2V2 = SV2 ≡
˙

SV2 −GV2∇h
f2P (2)
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and

AV3V3 = SV3 ≡
˙

SV3 −GV3∇h
f3P (3)

In these equations, Vi represents the velocity component in the ith direction, P is the pres-
sure, and ∇h

fi represents the ith component of the face-centred discrete gradient operator, ∇h
f .

AVi is the linearized coe�cient matrix for Vi, and SVi and is its source term, comprised of the

nonlinear term
˙

SVi and the pressure gradient integrated over the �nite volume, GVi∇h
fi. If the

�ow is turbulent, then the set of equations also includes the �nite volume-integrated discrete
equations for the turbulent kinetic energy and dissipation

AKK= SK (4)

and

AEE= SE (5)

The momentum equations can be written in terms of a single state vector

AVV= SV=
˙

SV −GV∇h
fP (6)

When we decompose AV into its diagonal and o�-diagonal parts,

AV =DV − (LV +UV ) (7)

we get

DVV=
(
(LV +UV)V+

˙

SV
)

−GV∇h
fP=D

VV̂ −GV∇h
fP (8)

which leads to

V= V̂ − D̂∇h
fP (9)

Multiplying both sides of (9) by the density, taking the cell-centred divergence, ∇h
c ·, and elimi-

nating ∇h
c · (�V) using continuity, we get the pressure equation of the SIMPLER

technique [1, 2]

�̃
h
P≡ ∇h

c · (�D̂∇h
f)P=∇h

c · (�V̂) (10)

in which �̃
h
is a generalized Laplacian. The scalar potential equation of the SIMPLER algo-

rithm is derived by writing (9) for both an exact (V∗) and an approximate (V) velocity �eld,
and by subtracting the two, assuming that V̂ is the same for the two cases, which leads to

V′ ≡V∗ −V= − D̂∇h
f (P

∗ − P) (11)

De�ning a scalar potential

�≡P∗ − P (12)
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and performing the same operations as for the pressure equation, we get the scalar potential
equation

�̃
h
�=∇h

c · (�V) (13)

which gives us the velocity update

V∗=V − D̂∇h
f� (14)

SIMPLER uses the velocity update (14) but not the pressure update, (12). As Kumar [2]
points out, there is an important reason why the velocity update is acceptable even though
the pressure update is not, and this reason is that (13) and (14) form a projection on the
velocity �eld.
Based on this analysis, Kumar [2] proposes the following alternatives for the scalar potential

�eld. First, one could formulate an orthogonal projection in an L2 space:

(�V)∗=�V − ∇h
f� (15)

which gives the pure Poisson equation

�h�≡ ∇h
c · ∇h

f�=∇h
c · (�V) (16)

Another, ad hoc, alternative, is to look at (16) and realize that � is a linear operator acting
on �V

(�V)∗ = (I − ∇h
f (�

h)−1(∇h
c ·))(�V) (17)

�= (�h)−1(∇h
c ·)(�V) (18)

which suggests that one could use an equation for � of the form

�=
1
�

∇h
c · (�V) (19)

� could either be a constant or a variable. Kumar [2] suggests the possible alternatives

�=1 (20)

and

�=(DV)−1 (21)

Finally, one could decide to not solve a scalar potential equation at all, and rely on the pressure
equation alone to enforce continuity on the velocity �eld. This is a weaker enforcement of
continuity since, although it solves a generalized Poisson equation for the pressure, does not
project the velocities back to a mass-conserving �eld.
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3. THE NONLINEAR PICARD ITERATION

The set of nonlinear equations to be solved is (1)–(3), (10), and, optionally, one of (16)
or (19), and, in the case of turbulent �ow, (4) and (5). (Here, we abandon (13) in favour
of (16), based on the projection principles discussed in Reference [2].) There are many options
on how to solve this system of nonlinear equations. We use the nonlinear Picard iteration
as in Reference [1], by which we imply that we solve the equations in a sequential manner,
updating coe�cients and source terms between equations. The linearized equation for each
variable is solved for that variable using an iterative linear solver until the linear residual of
that equation drops below a satisfactory level. Once this is achieved, the variable is updated,
the next equation is discretized and, the linearized equation for that variable is solved for,
and so on.
What we are e�ectively doing is deriving measures of nonlinearity from the behaviour of

linear systems. Needing to use the linear subproblems to measure nonlinearity, as opposed to
relying on the nonlinear problem itself, is a limitation arising from using a Picard iteration
as the nonlinear solver; this kind of solver does not provide information on nonlinearity,
such as Jacobian information [5], which can be used [6, 7] to calculate the ‘goodness’ of a
linearized approximation to the nonlinear system. Thus, our measure of nonlinear convergence
(discussed in Section 3.3) is analysed as a function of the tightness of linear solves (discussed
in Section 3.1), and the under-relaxation of linear equations (discussed in Section 3.2), both
of which a�ect the linear update to the nonlinear equation. In addition, the nonlinearity of
the system changes as we move from equation to equation, because the point around which
the equation is linearized moves as we move from equation to equation due to the successive
substitution in the Picard iteration.
Our performance analyses are strongly connected with the kind and implementation of linear

solver used to solve the discretized equations. Therefore, in what follows, we give a brief
description of linear solver ideas as they pertain to our results, although most of these ideas
can be found, and in greater detail, in other sources (e.g. References [8, 9]). We also explain
our metric for the convergence of the nonlinear iteration, since it is di�erent from the metrics
usually used in the literature for measuring nonlinear convergence.

3.1. Solution of the linear equations

The linearized equations for any variable can be written, in state space form (for the kinds
of compact stencils analysed here; see Reference [2]) as

Ax= b (22)

Given an initial guess, x0, and an initial residual, r0, de�ned as

r0 = b− Ax0 (23)

the solution to (22) is the same [9] as the solution to

Ae= r0 (24)

where

x= x0 + e (25)
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In our case, the matrix A can be decomposed as

A=D − (L1 +U1 + L2 +U2 + L3 +U3) (26)

in which D is the diagonal of the matrix A;L1; L2; L3 are the three lower-triangular diagonals
of A; and U1; U2, and U3 are the three upper-triangular diagonals of A. Equation (24) is then
operator-split to solve the system in each direction as a tridiagonal system (see Reference [2],
for details on the implementation and mathematical representation). For example, one operator-
split iteration can be written as

el;1 = (D − L1)−1((U1 + L2 +U2 + L3 +U3)el + r0) (27)

where l stands for the iteration number. One ‘sweep,’ de�ned here, is three successive tridi-
agonal solves, one in each direction. This amounts to one iteration of a steady ADI solve [8].
The ADI method is a stationary iterative method [8], and constructs the solution from a

�xed residual, r0, as opposed to nonstationary methods such as Generalized Minimal RESidual
(GMRES) or Bi-Conjugate Gradient-STABilized (BiCGSTAB) [8, 9], which construct the
solution from an additive combination of vectors based on the residual vector r0 and the
operator matrix A, such as Akr0 or (AT)kr0, for whole number values of k. These methods
are also known as Krylov methods [8]. The ADI method is then used as a preconditioner
(approximate inverse) for the nonstationary iterative method. We use a variant of GMRES,
called restarted GMRES, or GMRES (m), in which the solution is constructed from up to m
vectors, each operated upon by an ADI preconditioning operation. If the error tolerance for
the solution is achieved within m vectors, then the solution is calculated and the process is
terminated. If not, the solution and residual are updated, and a new sequence of m vectors
is generated, and so on, until the error tolerance or the maximum number of Krylov vectors
speci�ed is reached.
In our solution technique, GMRES uses a speci�ed total number of vectors, each of which

requires a preconditioning operation. The total number of GMRES vectors used is therefore
the total number of preconditioning operations (i.e. sweeps), and is a measure of the tolerance
to which the linear system is solved, also referred to here as the tightness of the linear solve.
As the tightness of the linear solve is increased (i.e. the tolerance is decreased), the number
of GMRES vectors that will be needed to perform the solve also increases.
As mentioned in Reference [2], the projection equations help to maintain the mass �ux

�eld in a divergence-free space. The question to be answered is how tightly the projection
equations need to be solved; in other words, how closely the mass �ux needs to be maintained
in a divergence-free space. This aspect will be studied in the section on results.

3.2. Under-relaxation

The updates to the variables that are obtained for a nonlinear equation are only locally valid
in the vicinity of a linearization, and the values may need to be damped (under-relaxed) as
a result. We use the form of under-relaxation used by Patankar [1]. This under-relaxation
damps the updates for the nonlinear iteration through a modi�cation to the linear system of
equations. The reason as to why we use this particular form of under-relaxation is shown in
what follows.
If we decompose the matrix A as

A=D − L−U (28)
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where D is the diagonal part of A, and L and U are the strictly lower- and strictly upper-
triangular parts of A, the Jacobi iteration [9] is de�ned as

Del+1 = (L+U )el + rl (29)

in which

rl=Ael (30)

Equation (29) can be rewritten as

el+1 =D−1((L+U )el + rl)=D−1(L+U + A)el=KJel (31)

Here, KJ is the convergence matrix for the Jacobi iteration. It follows that the correction
vector after n iterations is

en=Kn−1J e1 =Kn−1J D−1r0 = (D−1(L+U + A))n−1D−1r0 (32)

Now, we de�ne, as in Reference [1], an under-relaxation factor, �, such that

D̃=(1=�)D (33)

and

b̃= b+ (1− �)D̃x0 (34)

The signi�cance of the under-relaxation implied by (33) and (34) is that, for a Jacobi iteration,
the solution yielded by this transformation corresponds to a scaling of the correction vector
at every Jacobi iteration l; ẽl, by the factor �, and thus the correction vector after n iterations,
ẽn, by �n

ẽn= K̃
n−1
J e1 = K̃

n−1
J

(
D
�

)−1
r0 ≡

((
D
�

)−1
(L+U + A)

)n−1(
D
�

)−1
r0 (35)

i.e.

ẽn= �n((D−1(L+U + A))n−1D−1r0)= �nKn−1J D−1r0 = �nen (36)

For a value of �=0:99, this yields a reduction in the correction vector of about 0.82 after
20 iterations. This can be particularly severe when one considers that the linear solver is
embedded within a nonlinear solver; in such a case, if one can approximate the nonlinear
problem as a linear one, and ignore the e�ects of other variables on the convergence of
the variable under consideration, the reduction after 20 nonlinear iterations, each with 20
Jacobi iterations, is about 0:99400, or 0.018. This is an appreciable slowdown; in practice, the
nonlinearity of the problem perturbs the point around which the linearization is done, and can
considerably amplify the slowdown. This will be explored more in the section on results. This
is the motivation for using this kind of under-relaxation, i.e. the fact that it is a particularly
severe form of damping, and is therefore a very good test of the sensitivity of the nonlinear
aspects of the problem to e�ects arising from the linear solutions to subproblems.
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The analysis for the Gauss–Seidel iteration is very similar. Speci�cally, the convergence
matrix here is

KGS = (D − L)−1(A+U ) (37)

and

e1 = (D − L)−1r0 (38)

The correction vector after n iterations is given by

en=(KGS)n−1e1 = ((D − L)−1(A+U ))n−1(D − L)−1r0 (39)

For the under-relaxed iteration, we have

ẽn=(K̃GS)n−1e1 =

((
D
�

− L
)−1

(A+U )

)n−1(
D
�

− L
)−1

r0 (40)

i.e.

ẽn= �n((D − �L)−1(A+U ))n−1(D − �L)−1r0 (41)

Thus, we see the same shortening of the correction vector; however, in this case, the length
as well as the direction of the step vector (due to the � in D − �L) change. Again, this can
be signi�cant over a large number of linear as well as nonlinear iterations when the linear
problem is part of an overlying nonlinear problem.

3.3. Convergence criterion

We explain here our measure of convergence of the nonlinear iteration, which will be used
to show our computational results. At each iteration, l, we �rst calculate an L1 norm of the
residual of each variable � at each grid point

Rl� ≡ ∑
i; j; k

|rl�(i; j; k)| (42)

This residual is normalized by an order-of-magnitude term, T l�, for the variable � at the
iteration level l. This term, in turn, is taken to be the L1 norm of a pointwise order-of-
magnitude term, tl�(i; j; k)

T l�=
∑
i; j; k

|tl�(i; j; k)| (43)

The term tl�(i; j; k), in turn, is calculated as the greater of the two terms t
l
1�(i; j; k) and

tl2�(i; j; k), the former being the sum of the positive terms in the �nite-di�erence equation
at that point, and the latter being the sum of the negative terms in the �nite-di�erence equa-
tion at that point. Thus

tl�(i; j; k)= max(t
l
1�(i; j; k); |tl2�(i; j; k)|) (44)
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The ratio Rl�=T
1
� is less than unity and is a measure of how small the residual is, relative to

the size of the terms in the equation. In general, if �mach is the precision of the machine, then
the number of digits of precision of the machine is

Dmach = log
(

1
�mach

)
(45)

The ratio Rl�=T
l
� can, therefore, be only as small as 10

−Dmach . One can thus de�ne, at each
iteration l, the ‘approach to convergence,’ Cl�, of the variable �

Cl� ≡Dmach + log
(
Rl�
T l�

)
(46)

(The normalized residual, Rl�=T
l
�, can be viewed as an L1 norm of the residual, rl�(i; j; k),

relative to a vector space weighted by 1=|tl�(i; j; k)|.) As one approaches convergence, the
residuals of the governing equations become smaller and smaller relative to the terms in the
equations, and so Rl�=T

l
� becomes closer to machine zero, and thus C

l
� approaches zero. This

makes the de�nition of a fully converged solution easy: when Cl� is zero, the equation for �
is converged. For the whole system of equations, an overall approach to convergence, Cl, is
calculated at each iteration l, as follows:

Cl= max
�
(Cl�) (47)

The nonlinear method is fully converged when the overall approach to convergence is zero.
In practice, this is rarely possible, and so a value is set by the user for how low Cl can be
before it is considered to represent a converged solution.

4. COMPUTATIONAL RESULTS

Following a description of the test cases, we discuss, in order, the dependence of the conver-
gence history on under-relaxation factors, variations on the projection algorithm, and tightness
of the linear solves. Once we determine the optimal under-relaxation factors for the pressure
and scalar potential equations, we use that information in the rest of the analysis in this
paper. The results shown for all calculations are optimal convergence histories; the ranges
of values of under-relaxations and tightness of linear solves studied are far greater than the
ones presented. The dependence of the convergence histories on under-relaxation factors and
tightness of linear solves is only studied for the pressure and scalar potential equations, and
not the momentum or the kinetic energy or dissipation equations. The tightness of the linear
solves of variables other than the pressure and scalar potential equations is not very signi�cant
in terms of overall convergence rate, because the linear equations for these other variables
are well-behaved and converge rapidly. The under-relaxation factors for these variables, how-
ever, a�ect the convergence rate. Since our focus here is on the pressure and scalar potential
projection equations, these under-relaxation factors are kept constant for each case. Many of
the convergence histories are shown with respect to both the CPU time and the number of
nonlinear iterations. This is important because, if more e�cient ways are used to solve the
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linear equations, the nonlinear convergence becomes more important than the linear conver-
gence, and the variable that can measure the nonlinear convergence is the number of nonlinear
iterations.
All calculations are performed using GMRES (30) as the linear solver.

4.1. Test cases and computational resources

The four test cases are based on one physical situation: the �ow of a jet in a sudden expansion
duct. The geometry is shown in Figure 1. The parameters for the �ows are

Vave =
V (W1)2

W 2 (48)

Re=
VaveW�
�

(49)

The four cases are as follows:
Case 1: W =0:2m, L=2:0m, W1=0:06m, Re=100, laminar �ow, 10× 10× 10 uniform

grid.
Case 2: W =0:2m, L=2:0m, W1=0:06m, Re=1000, turbulent �ow, 10× 10× 10 uni-

form grid.
Case 3: W =0:2m, L=3:41m, W1=0:086m, Re=101 386, turbulent �ow, 40× 20× 20

nonuniform grid.

L

W

W1

V

Figure 1. Geometry of cases considered:sudden expansion of a jet.
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Case 4: W =0:2m, L=2:0m, W1=0:06m, Re=100, laminar �ow, 60× 30× 30 uniform
grid.
The �rst three test cases are designed to be progressively more nonlinear in both the physics
and the numerics. The fourth case is designed to provide a comparison to the �rst case with
a more re�ned calculation. All calculations for Cases 1 and 2 were performed on a Silicon
Graphics Octane with a MIPS R10000 250MHz IP30 processor and 768MB of RAM. All
calculations for Case 3 were performed on a Silicon Graphics Origin 2000 with a MIPS
R10000 250MHz IP27 processor and 5.2GB of RAM. Both these machines have 15.6 sig-
ni�cant digits of accuracy in double precision. The calculations for Case 4 were performed
on a Dell Precision 670 with an Intel Xeon processor and 3GB of RAM. This machine has
18.9 digits of precision.

4.2. Under-relaxation factors

Figures 2–4 show the e�ect of the pressure under-relaxation factor (urfp) on the conver-
gence history of the nonlinear Picard iteration for Cases 1–3, respectively. NSWPP, NSWPC,
NSWPV, and NSWTK are the number of sweeps performed for the pressure, scalar potential,
velocity components, and kinetic energy (and dissipation), respectively. The under-relaxation
factors for the velocity components are kept at 0.7, and those for the kinetic energy and
dissipation are kept at 0.85 for Cases 2 and 3. For the study of the pressure equation, the
under-relaxation factor for the scalar potential is kept at 1.0. From our earlier discussion on
the e�ect of under-relaxation on the scaling of the step, a slowdown in the convergence rate
for the nonlinear iteration is expected. (For each nonlinear iteration, we expect a scaling of
the step by a factor of only about 0.901 for a value of urfp of 0.995, in 20 linear iterations.)
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Figure 2. E�ect of pressure under-relaxation, Case 1, NSWPV=5, NSWPP=20, NSWPC=20.
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Figure 3. E�ect of pressure under-relaxation, Case 2, NSWPV=5,
NSWTK=5, NSWPP=20, NSWPC=20.

0 500 1000 1500 2000 2500 3000
10

11

12

13

14

15

16

A
pp

ro
ac

h 
to

 C
on

ve
rg

en
ce

, C
l

CPU Time, Seconds on an SGI Origin 2000

urfp=1.000
urfp=0.999
urfp=0.995
urfp=0.990
urfp=0.980

Figure 4. E�ect of pressure under-relaxation, Case 3, NSWPV=5,
NSWTK=5, NSWPP=20, NSWPC=20.
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(For clarity, not every point corresponding to a nonlinear iteration is shown in the graphs.)
However, the dependence of the convergence rate on urfp is drastic. It is likely that this
drastic performance is due to the fact that both the length and the direction of the solution
vector are modi�ed in each linear step.
A couple of features need to be observed here. First, in Cases 2 and 3, it can be seen that

the convergence tails o� after a certain point. We refer to this as the asymptotic convergence;
this is dependent on the relative noise in the function evaluation and the range of scales in the
problem. We show how several parameters in our study a�ect this value. In Case 2, this is
reached at a value of about 5.5, and in Case 3, the best scenario value in all the simulations
in this paper is about 11, about a 4.5 orders of magnitude reduction in the overall residual.
Second, in Case 3, we can see that, for an under-relaxation factor for the pressure of

0.999, the asymptotic approach to convergence starts to bounce between approximately 12 and
11.25, after it reaches a value of 11.5. Whenever the convergence history shows an oscillating
behaviour, we refer to it as erratic convergence. This can either go down on average or reach
an asymptotic value on average; in this case, we get an erratic asymptotic convergence.
Figures 5–7 show the e�ect of the scalar potential under-relaxation factor (urfc) on the

convergence history for Cases 1–3, respectively. For these cases, urfp is kept at 1.0. That the
nonlinear iteration should behave so well for even urfp=0:01 (which, according to Section 3.2,
yields a scaling of the step by a factor of 1.0e-40, in 20 linear iterations!) is surprising.
As we can see, for Case 3, we again see erratic asymptotic convergence for values of the
scalar under-relaxation factor other than 1, whereas the asymptotic convergence for an under-
relaxation factor of 1 is 11, an order of magnitude less than that for under-relaxation factors
other than 1.
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Figure 5. E�ect of scalar potential under-relaxation, Case 1, NSWPV=5, NSWPP=20, NSWPC=20.
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Figure 6. E�ect of scalar potential under-relaxation, Case 2, NSWPV=5,
NSWTK=5, NSWPP=20, NSWPC=20.

0 500 1000 1500 2000 2500 3000
10

11

12

13

14

15

16

A
pp

ro
ac

h 
to

 C
on

ve
rg

en
ce

, C
l

CPU Time, Seconds on an SGI Origin 2000

urfc=1.00
urfc=0.70
urfc=0.01

Figure 7. E�ect of scalar potential under-relaxation, Case 3, NSWPV=5,
NSWTK=5, NSWPP=20, NSWPC=20.
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The pressure equation yields an update to the pressure through enforcement of the con-
tinuity constraint in the SIMPLER algorithm, but does not correct the velocities to satisfy
the continuity constraint. Thus, the projection of the mass �uxes into a divergence-free space
is not complete. The pressure is used in the momentum equations to yield a velocity; thus,
the velocities obtained from the momentum equation weakly satisfy the continuity constraint.
However, the pressure obtained from the pressure equation is consistent with a divergence-free
mass �ux. The scalar potential equation does not correct the pressure, but strictly enforces
the divergence-free condition on the mass �uxes. This suggests that the strict enforcement
of the continuity constraint using the scalar potential (projection) equation is not absolutely
essential. The next section explores the question of whether the scalar potential equation
should be solved at all.

4.3. Projection algorithm variations

As discussed in Section 2, a variation on the SIMPLER strategy is to completely omit the
scalar potential projection. Two other variants were discussed in that section: the use of (19),
with a value of �=1 and with a value of � equal to the inverse of the diagonal of the
Laplacian operator (integrated over the control volume). This section studies the e�ects of
such variations on the SIMPLER projection scheme on the overall nonlinear convergence.
Figure 8 shows the e�ect of the di�erent projections on the convergence history of Case 1.

In this �gure, ‘default’ refers to the use of the projection de�ned by (15) and (16), with
an underrelaxation of one for the scalar potential, ‘alt1’ refers to the use of (19) and (20),
‘alt2’ refers to the use of (19) and (21) and ‘nopc’ refers to the case where the scalar
potential equation is not solved for at all. Figure 9 shows the convergence history for the
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Figure 8. E�ect of variation of projection algorithm, Case 1, NSWPV=5, NSWPP=20, NSWPC=20.
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Figure 9. E�ect of variation of projection algorithm, Case 1, NSWPV=5, NSWPP=20, NSWPC=20.

Table I. Dependence of convergence history on scalar potential under-relaxation.

Case 2:T (6) Case 2:N (6) Case 3:N (11:5)

default 155 150 150
alt1 123 150 150
alt2 123 150 150
nopc 162 195 150

same comparison of solvers, but plotted against the number of overall nonlinear iterations.
For this case, using alt1 and alt2 give the same result. Furthermore, they give slightly better
convergence rates per nonlinear iteration, and since they do not require the solution of a
Poisson equation, they are more e�cient than the default projection method. It is also inter-
esting to note what happens when the scalar potential equation is not solved at all. Figure
9 shows that the convergence rate per nonlinear iteration is better when the scalar potential
equation is solved, but because of the extra work that is needed in solving the equation, the
default projection method is only as e�cient as not solving the scalar potential equation. In
other words, the e�ciency gained by solving the scalar potential equation is compensated for
by the work needed to solve the scalar potential equation.
Cases 2 and 3 show similar trends, as can be seen in Table I. In these, T(6) and N(6)

stand for the CPU time (in seconds) and number of nonlinear iterations needed in order to
reduce Cl to a value of 6. The only di�erence (not shown here) from Case 1 is that when the
scalar potential is not solved for at all, the convergence is somewhat wavy (Case 2) or noisy
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(Case 3). For Case 3, all four projection options take the same number of nonlinear iterations
for most of the history, thereby implying that there is no bene�t in the early period of the
history of solving the scalar potential equation. However, the asymptotic level of convergence
is erratic for all options other than the ‘default’ option, and bounces between approximately
11.25 and 12.
Thus, an overall conclusion about the di�erent projection options, based on the above data,

is that the scalar potential equation should be solved when possible. Even though only one
case, viz. Case 3, shows the loss in the asymptotic level of convergence reached by the
simulations due to the inaccuracy in solving the scalar potential equation, this case is also the
most nonlinear and complex, and hence the closest to real situations involving complicated
nonlinear behaviour. The data also suggest that the scalar potential equation may not need to
be solved very accurately. This hypothesis will be explored in the next section.

4.4. Tightness of linear solves

The e�ect of the tightness of linear solves on the overall nonlinear convergence is evaluated
for each case by varying two parameters over a range and observing the convergence histories.
The two parameters are NSWPP and NSWPC, the maximum number of sweeps (or Krylov
vectors, because GMRES is used as the linear solver) allowed for the solution of the pressure
and scalar potential equations, respectively. The tighter the solve on the pressure equation,
the more the solution of the pressure equation is consistent with an exact projection of the
momentum equations into a divergence-free space. Similarly, a larger value of NSWPC means
that the mass �ux at the end of a nonlinear iteration is more divergence-free. For all the
calculations here, the values of urfp and urfc are kept at unity.
The ranges of NSWPC and NSWPP used for the three cases are chosen such that they

represent a good spread in the tightness of the solves. From previous experience, a range
from 10 to 200 appears to be a fairly good one. For the simpler cases such as Cases 1
and 2, increasing the value of NSWPC or NSWPP to beyond 200 is pointless, since the
equations are solved to machine precision with a value less than 200. For Case 3, the number
of Krylov vectors needed to obtain machine precision is found to be much larger, on the
order of a few hundred to a thousand. But it is not practical to use as many as 1000 vectors
to solve a linear problem at each nonlinear iteration. (This is an example of a situation in
which using a more e�cient linear solver, such as a multigrid solver, might greatly decrease
the amount of CPU time needed for solution of the linear equations. This would change the
focus from the CPU time to the number of nonlinear iterations.) Thus, for all cases, 200 is
chosen to be the upper value of the ranges. The lower value of 10 is obtained somewhat by
trial and error, based on the idea that a minimum number of Krylov vectors would be needed
to obtain a good solution. For Case 1, since the CPU time needed to converge each simulation
is not very large, a greater range is chosen by making the minimum value of NSWPC to
be as low as 2. Within the ranges chosen, the selection of individual values of NSWPP and
NSWPC is fairly arbitrary.
For Case 1, the e�ect of solving the pressure equation to varying levels of accuracy is

studied by using the following set of values of NSWPP: {5; 10; 20; 40; 80; 200}. This is done for
a value of NSWPV=5 and for each of the following values of NSWPC: 2; 3; 5; 10; 20; 40; 80,
and 200. We observed that a certain ‘break-even’ value of NSWPP exists for each value
of NSWPC; the convergence rate is optimal for this value of NSWPP. A value of NSWPP
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Table II. E�ect of NSWPP on convergence rate,
Case 1, NSWPV=5, NSWPC=5.

NSWPP T (6) N (6)

5 50 89
10 48 81
20 52 82
40 58 82
80 71 82
200 75 82

Table III. E�ect of NSWPC on convergence rate,
Case 1, NSWPV=5, NSWPP=10.

NSWPC T (6) N (6)

2 43 78
3 46 81
5 47 82
10 52 83
20 63 83

smaller than this break-even value yields erratic convergence, and a value greater than this
value does not yield any improvement in the convergence rate; in fact, since more work is
done per nonlinear iteration with a larger value of NSWPP, this makes the iteration ine�cient.
The NSWPP=5 convergence history is rather erratic, whereas all the other curves are smooth,
with the NSWPP=10 curve being the most e�cient. The reason for this behaviour is that all
the simulations with a value of NSWPP greater than or equal to 10 take the same number of
nonlinear iterations to converge to a given level. For all the NSWPC values reported above,
the break-even value of NSWPP is found to be 10.
For each of the NSWPP values from the set {5; 10; 20; 40; 80; 200}, the e�ect of NSWPC on

the nonlinear convergence is also studied for the range of NSWPC values: {2; 3; 5; 10; 20; 40;
80; 200}. It is found that the most e�cient convergence is obtained with NSWPC=2. The
e�ect of varying NSWPP and NSWPC on the convergence history of Case 1 can be seen in
Tables II and III.
Case 3 shows similar behaviour. For Case 3, the e�ect of the tightness of the linear solves is

studied by simulating, for NSWPV=5 and NSWTK=5, the following range in both NSWPP
and NSWPC: {10; 20; 80; 200}. This case, too, shows the break-even behaviour for NSWPP:
below a certain value of NSWPP (=20), the convergence is erratic. But beyond that value,
further work does not improve e�ciency. As in Case 1, the best value for NSWPC is the
lowest used; in this case, 10. As in Case 1, further work on the scalar potential equation
solve is wasted. The observations for Case 3 are summarized in Tables IV and V.
Case 2 is slightly di�erent in that the lowest value of NSWPC is not the most e�cient

for all values of NSWPP. Using NSWPV=5 and NSWTK=5, the following range in both
NSWPP and NSWPC is studied: {10; 20; 40; 80; 200}. Here, too, for NSWPP=10 and 20,
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Table IV. E�ect of NSWPP on convergence rate,
Case 3, NSWPV=5, NSWTK=5, NSWPC=10.

NSWPP T (11) N (11)

10 Not achieved Not achieved
20 1750 300
80 3000 300
200 5000 300

Table V. E�ect of NSWPC on convergence rate,
Case 3, NSWPV=5, NSWTK=5, NSWPP=20.

NSWPC T (11) N (11)

10 1750 300
20 1750 300
80 3000 300
200 5000 300

Table VI. E�ect of NSWPC on convergence rate,
Case 2, NSWPV=5, NSWTK=5, NSWPP=80.

NSWPC T (6) N (6)

10 200 155
20 180 135
40 205 125
80 260 125
200 420 125

the lowest value of NSWPC, namely 10, performs the best, requiring just as many nonlinear
iterations as the other simulations with larger values of NSWPC. However, for NSWPP=40
and 80, the break-even value of NSWPC seems to shift from 10 to 20 (for NSWPP = 40)
to 40 (for NSWPP = 80); in other words, when more work is done on the scalar potential
equation, the simulation takes fewer nonlinear iterations to converge, up to a point. Again,
with a more e�cient linear solver, what would be more important is the dependence of the
convergence history on the number of nonlinear iterations, and thus the trends generally agree
with Cases 1 and 3. This is shown in Table VI.
The convergence results for Case 4 are presented in Tables VII and VIII. These show that

there exists a break-even point in terms of number of CPU time to converge by 6 orders of
magnitude which is NSWPP=10, NSWPC=20. This is close to yielding the fewest nonlinear
iterations. Looking further, we see that for all values of NSWPP, moderate values of NSWPC
(around 20) give the minimum CPU time. Break-even points for NSWPP for a given NSWPC
are also moderate (10–30). For a very low value of NSWPP, it may be deleterious to ‘over-
solve’ the scalar potential equation, as can be seen for values of NSWPP of 5 and NSWPC
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Table VII. E�ect of NSWPP and NSWPC on number of nonlinear iterations, N (13), Case 4.

NSWP P=5 P=10 P=20 P=30 P=40 P=80

C =5 674 382 323 371 362 836
C =10 509 319 370 398 412 246
C =20 412 253 232 325 293 236
C =30 524 348 272 209 264 259
C =40 586 304 221 200 178 174
C =80 Not achieved 471 291 221 227 202

Table VIII. E�ect of NSWPP and NSWPC on CPU Time, T (13), Case 4.

NSWP P=5 P=10 P=20 P=30 P=40 P=80

C =5 1067 681 715 991 1089 3891
C =10 936 649 879 1101 1300 1169
C =20 923 603 639 1074 1025 1121
C =30 1390 982 918 771 1079 1368
C =40 1790 955 810 829 835 1021
C =80 Not achieved 2427 1534 1244 1350 1529

of 80. Note that T (13) for this case represents a reduction in the initial residual by 6 orders
of magnitude, since the machine used has roughly 19 digits of precision.
The overall conclusions regarding the tightness of linear solves for the scalar potential

equation is that the scalar potential equation needs to be solved only to a very coarse tolerance.
This is in agreement with Sections 4.2 and 4.3, which suggest that whereas the under-relaxation
factors for the scalar potential can be very large, and whereas coarse alternatives to the scalar
potential equation can sometimes do well, the solution (albeit a very coarse one) of the scalar
potential is still necessary. This highlights the importance of projecting the mass �ux into a
divergence-free space; a small correction has a large impact on the solution.
The overall conclusion regarding the tightness of linear solves for the pressure is that while

there seem to be break-even points for NSWPP for all the cases, these are usually not very
large numbers, and beyond that the less work one does in solving these equations, the more
e�cient one is in converging to the solution.

5. CONCLUSIONS

We have studied the sensitivity of the convergence of the nonlinear Picard method to the
maintenance of the mass �uxes in a divergence-free space.
The variables that a�ect the projection of the mass �uxes to a divergence-free space, that

are studied are: the values of the under-relaxation factors, the choice of projection algorithm,
and the tightness of linear solves, for both the pressure and the scalar potential equations.
The conclusions from this study are framed in the context of projection ideas for the pressure
and the scalar potential.
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The overall conclusions about the SIMPLER algorithm can be summarized as follows.
The �rst conclusion is that the nonlinear convergence is very sensitive to the correct solve of

the pressure equation. In terms of nonlinear iterations, there is a point of diminishing returns,
beyond which more work done on the pressure equation does not yield an improvement
in the nonlinear convergence. This can be signi�cant in terms of CPU time, because of the
expense concomitant with the solution of a Poisson equation. The determination of the correct
values of the number of sweeps for the pressure, and hence the enforcement of the mass �ux
projection, is not obvious. More work is needed before this can be correctly predicted.
The second conclusion is more powerful than the �rst; that the nonlinear convergence is

only weakly dependent on the linear convergence of the scalar potential (also referred to in
the literature as the pressure correction) equation, in the SIMPLER algorithm. The nonlinear
convergence is not strongly sensitive even to the presence or absence of a scalar potential
equation. However, the studies do indicate that a coarse solve of the scalar potential equation
is bene�cial to the convergence of the nonlinear iteration; failure to include it can potentially
a�ect the asymptotic convergence of the nonlinear iteration. This sensitivity is found to be
stronger in more complex cases. This has implications for real cases, which are far more
complex than the most complicated case shown here.
These conclusions suggest that the mass �ux projection inherent in the pressure equation,

although not strictly enforced via the Hodge decomposition for the mass �uxes (but applied to
the pressure), is su�cient, in large part, to maintain the mass �uxes in a divergence-free space.
This implies that the weak maintenance of the mass �uxes in a divergence-free space, through
the solve of the momentum equations, is su�cient for a practical simulation. The addition of
a scalar potential de�nitely improves the convergence rate; but this is to be expected, since
tighter enforcement of the mass �ux projection helps to improve the asymptotic convergence.
The second projection step is expensive because of the time involved in solving an extra
Poisson equation; however, this can be overcome by using a more e�cient solver, such as a
multigrid solver.
The bene�t of this study, however, is that one does not necessarily need Jacobian infor-

mation or similar such information stemming from the theory of nonlinear equations [5] in
order to correctly determine the appropriate update of the linearized step for optimal conver-
gence; the optimal enforcement of the continuity projections is enough to determine optimal
convergence of the NS equations.
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